University of California, Santa Barbara

Department of Electrical and Computer Engineering

ECE 152A – Digital Design Principles

Final Exam December 14, 2006

- This is a 3 hour exam; closed book, closed notes, no calculators.
- Answer all questions (except timing diagrams) on the paper provided by the instructor; answer timing diagram problems on exam sheet.
- Write on only one side of the paper.
- Attach answer sheets to this exam in the correct order.
- Include your name and perm # on every sheet.

Problem #1.

For the machine defined by the state table below:

PS	X = 0	X = 1	Z
A	Н	G	0
В	A	E	1
С	А	А	1
D	G	F	0
E	D	G	0
F	E	А	1
G	С	D	0
Н	G	В	0

1. Minimize the machine using an Implication Chart

B X A-A A-E C D X E X X X A-E A-E F X A-E Х 6 X X X X BX Xo H X B-F B C F D 6 E A · FIRST PASS : X'S (INCOMPATIBLE OUTPUTS) . SECOND PASS (AE) (BC)(BF)(CF)(DH) EQUIVALENT (AE) (BCF)(DH)(G) (AE) (BCF)(DH)(G) SINGLE STATE

2. Verify your answer to part 1 above by deriving the equivalence partition (using the Moore reduction procedure).

Po = (ABCDEFGH) P, = (ADEGH)(BCF) 2 0 7 G(1) 9 F(2) E < ×H(1) >G(1) ~ D (1) 7 6 (1) 7 C(2) > D(1) H ×B (2) $C \xrightarrow{A(i)} F \xrightarrow{g \in (i)} F$ B AE(I $P_2 = (AE)(DH)(G)(BCF)$ 2

 $P_2 = (AE)(DH)(G)(BCF)$ $A \xrightarrow{9H(2)}{F_{6(3)}} = E \xrightarrow{9D(2)}{F_{6(3)}}$, G (3) H / G (3) 3/ XB(4) A(i)F(i) $C \xrightarrow{A(i)} A(i)$ F/E(1) A(1) P3 = P2 = EQUIVALENCE PARTITION (AE) (DH) (G) (BCF)

3. Construct the state table for the reduced machine.

X=0 X=1 2 AE DH G 0 AE AE BCF 1 G BCF DH 0 BCF G DH 0

Problem #2.

In this problem you are to design the controller for an electronic black jack game. For those unfamiliar with the game, the object is to draw cards and get as close to 21 as possible without going over. You play against a dealer who also draws cards to 21. Player or dealer with the highest total without going over 21, wins the game.

There are two control inputs, the Deal button (D) and the Stand button (S). There are also inputs indicating that the current total ("active participant") is < 17 H(it), that the current total ("active participant") is > 21 B(ust) and that the player currently has a higher T(otal) than the dealer.

There are only two participants in the game, the dealer and the player, and only one is the "active participant" at any given time. The game begins with the player pressing the deal button (D). The player is the "active participant" in the idle state. Two cards are then dealt to both the player and the dealer. (You can assume the game has a display showing all of the player's cards and one of the dealer's (the dealer's "up card"); this is not part of the controller design).

Based on his total, the player then decides whether to draw more cards in an attempt to get closer to 21 (again, without going over). To draw an additional card, the player presses the deal button (D). If after drawing a card the player's total exceeds 21, the Bust (B) input goes high, the player loses and the game is over. To stop drawing cards (the player is satisfied with his total) and make the dealer the "active participant", the player presses the stand button (S).

If the player has not drawn to a total exceeding 21 and has pressed the stand button (S), control passes to the dealer. The dealer draws cards until his total exceeds 17 (at which time the participant with the higher total wins) or until his total exceeds 21 (at which time the player wins).

The controller has several outputs. The first, I(nitialize), causes 2 cards to be dealt to both the player and the dealer. A second, C(ard), causes a single card to be dealt to the active participant. A third output indicates whether the player or the dealer is currently active, P(layer). A fourth output indicates that the player has just won (W)inner.

Summarizing the inputs and outputs to this machine:

Inputs (maintain the order DSHBT in your solution):

- D: Deal Button
- S: Stand Button
- H: Active participant total < 17
- B: Active participant total > 21
- T: Player total > dealer total

Outputs (maintain the order ICPW in your solution):

- I: Deal 2 cards to both player and dealer
- C: Deal single card to active participant
- P: Player is currently active participant (0 indicates dealer active)
- W: Player has won
- 1. Construct a state diagram for the controller. Design the controller as a <u>Mealy</u> machine.
 - You can assume that the D and S inputs won't be active at the same time.
 - You should also assume that state transitions will be triggered by either D or S being pressed or by the indicators H or B becoming active, but never both simultaneously (this simplifies things).
 - You can further assume that D and S are disabled when the dealer is the active participant
 - The assumptions above and the resulting don't care input conditions will make the state diagram considerably simpler.

You will be graded on both the correctness and simplicity (number of states and number of transitions) of your design.

CONTROL INPUTS: D (DEM) S (STAND) TADICATOR TASPUTS: H (HIT, LIT) B (BUST, >ZI) T (TOTAL PLAYER) DEALER) OUTPUTS: I (INITIALIZE DEAC FIRST 2 GARDS) C (CARD TO ACTIVE PARTICIPANT) P (PLAYER CURRENTRY ACTIVE) W (WINNER) TAN CONSTRUCTING STATE DIAGRAM CONSIDER ASSUMPTIONIS D AND & NEVER CONCURRENTLY ACTIVE LIVERMER WITH H, B OK T H AND IS NEVER CONCURRENTLY ACTIVE

12/14/2006

Problem #3.

For the state diagram shown below (assume the state variables are A and B and that the output Z = A):

1. Construct a state table.

	N	S	
AB	X=0	X=1	2
00	01	10	0
01	00	10	0
11	XX	XX	X
10	00	01	1

2. Construct next state maps and determine next state equations for A+ and B+.

3. Determine the J and K inputs to the A and B flip flops. Recall the excitation table for the JK flip flop:

Q	Q+	J	K
0	0	0	Х
0	1	1	Х
1	0	Х	1
1	1	Х	0

4. The secondary state assignment often determines (in part) the complexity of the machine's implementation. In the state diagram above, the states are arbitrarily assigned the values 00, 01 and 10 (requiring only 3 of the 4 possible state assignments). Because of this secondary state assignment, an input to one of the flip flops includes 2 product terms and a sum term (requiring additional logic)

Can you find a different secondary state assignment that results in the J and K inputs to the A and B flip flops consisting of only the input x (or its complement), the state variables (or their complements) or the constant 1, i.e., no additional logic? The output Z should also remain equal to a state variable or its complement (*ideally* Z = A, as above). If so, demonstrate the assignment by determining the J and K inputs to the A and B flip flops.

FOR Z = A, STATE 10 BECOMES STATE 11 NS AB 2 X=0 X = 1 00 01 11 0 01 00 11 0 11 01 00 1 X XX 10 XX AB 60 01 11 X 10 0 X 0 0 0 0 X 1 A += XA' (SAME AS PREVIOUS) AB ARS 00 01 11 10 10 00 11 X 01 0 0 X X 6 X 0 X X × 1 X X X 1 JA=X KA = /

Problem #4

In this problem you are to design a 4-bit register with increment and rotate capabilities using only 7474 D flip-flops, 74157 quad, 2:1 multiplexers and 7482 2-bit, binary full adders.

The register has a 2-bit control input (S1S2) which causes the register to rotate left (S1S0 = 10, LSB \leftarrow MSB), rotate right (S1S0 = 01, MSB \leftarrow LSB), increment (S1S0 = 11) or do nothing (S1S0 = 00), i.e., hold contents. A block diagram is shown below:

Data Sheets for the three devices follow:

7474

ECE 152A - Fall 2006

			SERIES 54/74		'70		'7 '7	2, '73, 5, '107			'74			109			'110			'111		UNIT
				MIN N	I MOI	MAX	MIN	NOM N	AX	MIN I	NOM N	AAX	MIN	NOM	MAX	MIN	NOM	MAX	MIN	NOM	MAX	-
			Series 54	4.5	5	5.5	4.5	5	5 5	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	4.5	5	5.5	v
upply voltage, VC	C		Series 74	4.75	5	5.25	4.75	5 5	.25	4.75	5 5	5.25	4.75	5	5.25	4.75	5	5.25	4.75	5	5.25	
igh-level output cu	urrent, IOH				-	-400		-	100		-	400			-800			-800			-800	μA
ow-level output cu	urrent, IOL					16			16			16			16			16			16	mA
	Cloc	k high		20 .			20			30	-		20			25	-		25			
lse width, tw	Cloc	k low		30			47			37			20			25			25			ns
	Pres	et or clear low		25			25			30			20			25	-		25			
put setup time, t	su			201			01			201			10			201	1		01			ns
put hold time, th	n .			51			01			51			6			5	1		301			ns
	-		Series 54	-55		125	-55		125	-55	- 4	125	-56		125	-55		125	-55		125	°C
perating free-air te	emperature, TA			0 70 0)			
The arrow indica	ates the edge of	the clock puls	Series 74 le used for reference ded operatin	o nce: † g free	for the	70 e risir empe	0 Ig edge eratur	, [↓] for e rang	0 e (1	0 Inless	other	70 wise	e not	ed)	70	0		70	0		70	
The arrow indica actrical charac witching cha	ates the edge of cteristics ove	the clock pull r recommer	Series 74 the used for reference added operation V, TA = 25° (once: † g free	for the	70 e risir empe	0 lg edge eratur	, [↓] for e rang		0 Inless	other	70 wise	e not	ed) '10	70	0	'110	70		'111	70	UN
The arrow indica ectrical charac witching cha	ates the edge of cteristics over an acteristics, FROM	the clock pull r recomment $V_{CC} = 5 N$ TO	Series 74 se used for referended operatin V, TA = 25° (TEST CONDITIONS	o nce: f g free	for th air to	70 e risir empe	0 lg edge eratur	, ¹ for e rang '72, '73 76, '10'		0 Inless	other	70 wise	e not	ed) '10	70 9		'110 N TYP	70 70		'111 TYP	70 MA)	UN
The arrow indica ectrical charac witching cha	FROM (INPUT)	the clock pulse r recommendation $V_{CC} = 5 N$ TO (OUTPUT)	Series 74 we used for reference added operation V, TA = 25° (TEST CONDITIONS	0 ince: † g free C	for the air to	70 e risir empe	0 lg edge eratur , , MIN	, [↓] for e rang 72, 73 76, 107 TYP			other '74 TYP	70 wise	e not	ed) '10	70 9 9 MA>		'110 N TYF	70 70 MA)	0 K MIN 20	'111 TYP 25	MA	
The arrow indica actrical charac witching cha PARAMETER 1 fmax	FROM (INPUT)	the clock puls r recommer VCC = 5 \ TO (OUTPUT)	Series 74 se used for reference inded operation V, TA = 25° (TEST CONDITIONS	0 ince: † g free C MIN 20	for the air to '70 TYP 35	70 e risir empe	0 eratur , MIN 15	, ¹ for e rang (72, '73 76, '10) TYP 20		0 Inless C MIN 15	774 TYP 25	70 Wise MAX	e not	ed) '10	70 P MAX 3	0 (MII 2)	'110 N TYF 0 25	70 70 MA) 5 2 20	< MIN 20	'111 TYP 25 12	70 MA)	
he arrow indica ctrical charac vitching cha PARAMETER 1 fmax TPLH	ates the edge of cteristics over aracteristics, FROM (INPUT) Preset	the clock pult r recomment $V_{CC} = 5 N$ to (OUTPUT)	Series 74 er used for reference and ed operation V, TA = 25° (TEST CONDITIONS	0 ince: † g free C MIN 20	for the air to 70	70 e risir empe MAX 50	0 eratur , MIN 15	72, 73 76, 10 7YP 20 16		0 inless c MIN 15	774 TYP 25	70 wise MAX 25	e not	ed) '10 TY 3 1	70 P MAX 3 0 15 3 35	0 (MII 2 5	110 N TYP 0 25 12	70 MA) 5 2 20 3 25	< MIN 20 0	'111 TYP 25 12 21	70 MA)	
he arrow indica ctrical charac vitching cha PARAMETER [¶] fmax tPLH tPHL	ates the edge of cteristics over macteristics, (INPUT) Preset (as applicable)	the clock puls r recommer VCC = 5 V (OUTPUT)	Series 74 is used for references of the used for references of the used for references of the used for the used of the used o	0 ince: f g free C MIN 20	for the air to '70 TYP 35	70 ee risir empe MAX 50 50	0 eratur , MIN 15	, ¹ for e rang 772, 773 76, '10 TYP 20 16 25		0 Inless C MIN 15	774 TYP 25	70 wise MAX 25 40	e not	ed) '10 1 TY 3 1 2	70 P MAX 3 0 15 3 35 0 10	0 (MII 2) 5	'110 N TYP 0 25 12 18	70 MA2 5 2 20 3 25 2 20	< MIN 20 5 0	'111 TYP 25 12 21	70 MA2	
The arrow indica ectrical charau witching cha parameter fmax tPLH tPLH tPLH	ates the edge of cteristics over aracteristics, (INPUT) Preset (as applicable) Clear	the clock puls r recommer VCC = 5 V (OUTPUT) Q Q Q Q	Series 74 Series 74 the used for references the used for references the used for references V, TA = 25° (C) TEST CONDITIONS CL = 15 pF, RL = 400 Ω,	0 ince: † g free C MIN 20	for the air to '70 TYP 35	70 ee risir empe MAX 50 50	0 eratur , MIN 15	, ↓ for e rang 772, 773 76, '107 TYP 20 16 25 16	0 main pe (1 max) 28 40 29	0 anless c MIN 15 5	774 TYP 25	70 wise MAX 25 40 25	e not	ed) '10 TY 3 1 2 1	70 P MAX 3 0 15 3 35 0 19 7 26	0 (MII 2) 5 5 5	110 N TYP 0 25 12 18 12	70 MA) 5 2 20 3 25 2 20 8 25	< MIN 20 5 5 5	'111 TYP 25 12 21 12 21	MA) 18 30 2 18 31 2 18	
The arrow indice extrical charac witching cha parameters fmax tPLH tPHL tPHL tPHL	ates the edge of cteristics over aracteristics, (INPUT) Preset (as applicable) Clear (as applicable)	the clock puls r recommer VCC = 5 V (OUTPUT) Q Q Q Q Q Q	Series 74 Series 74 Le used for reference used for reference V, $T_A = 25^{\circ}$ (C TEST CONDITIONS CL = 15 pF, RL = 400 Ω , See Note 2	0 mce: † g free C MIN 20	for the air to	70 empe MAX 50 50 50	0 eratur , MIN 15	(72, 73) 76, 100 772, 73 76, 100 7YP 20 16 25 16 25	0 e (I MA)	0 anless c MIN 15 5 5	74 TYP 25	70 wise 25 40 25 40	e not	ed) '10 '10 '10 '10 '10 '10 '10 '10 '10 '10	70 P MAX 3 0 15 3 35 0 15 7 25 0 16	0 (MII 2 5 5 5 5 5	110 N TYP 0 25 12 18 12 18	70 MA) 5 2 20 3 25 2 20 8 25 2 20 2 20 2 20 2 20 2 20 2 20 2 20 2	< MIN 20 0 5 5 0	'111 TYP 25 12 21 12 21	70 MA2 18 30 2 18 31 2 11	UN K MH 3 0 7

74157

25

propagat HI

e, high-to-low-level output.

50

18

QUAD 2- TO 1-LINE DATA SELECTORS/MULTIPLEXERS

157 NONINVERTED DATA OUTPUTS

TPHL

	INPUT	OUTPUT		
STROBE	SELECT	A	в	'157, 'L157, 'LS157,'S157
Н	X	x	x	L
L	L	L	x	L
L	L	н	x	н
L	н	x	L	L
L	н	x	н	н

H = high level, L = low level, X = irrelevant

TPHL

tPLH

TPHL

ns

ns

ns

MIN TYP MAX UNI

TEST CONDITION		FRUNKLUNPILLI	TECT COMPLETION
TPI H	tei H		TEST CONDITION
11070	tPHL .	Data	

.

	Data		9	14
		Ci = 15 pE	9	14
	Strobe	$B_{L} = 400 \Omega$	13	20
1		See Note 3	14	21
	Select		15	23
			18	27

 $\label{eq:tplh} \begin{array}{l} \P & tp_{LH} \equiv propagation \ delay \ time, \ low-to-high-level \ output \\ tp_{HL} \equiv propagation \ delay \ time, \ high-to-low-level \ output \end{array}$

NOTE 3: Load circuit and voltage waveforms are shown on page 3-10.

7482

012	INP	UTS		OUTPUTS							
1				WHE	IN CO) = L	WHE	EN CO) = H		
A1	B1	A2	B2	Σ1	Σ2	C2	Σ1	Σ2	C2		
L	L	L	L	L	L	L	Н	L	L		
н	L	L	L	н	L	L	L	н	L		
L	н	L	L	н	L	L	L	н	L		
н	н	L	L	L	н	L	н	н	L		
L	L	н	L	L	н	L	н	н	L		
н	L	н	L	н	н	L	L	L	н		
L	н	н	L	H	н	L	L	L	н		
н	н	н	L	L	L	н	H	L	н		
L	L	L	н	L	Н	L	Н	н	L		
н	L	L	н	н	н	L	L	L	н		
L	н	L	н	н	н	L	L	L	н		
н	н	L	н	L	L	н	н	L	н		
L	L	н	н	L	L	н	н	L	н		
н	L	н	н	н	L	н	L	н	н		
L	н	н	н	н	L	н	L	н	н		
н	н	н	н	L	н	н	H	н	н		

H= high level, L = low level

PARAMETER	FROM (INPUT)	TO (OUTPUT)	TEST CONDITIONS	MIN TYP	MAX	UNIT
tPLH	C0 51				34	
^t PHL	B2	21			40	ns
tPLH .		B2 52	$C_{1} = 15 = 5$ $B_{1} = 400 \Omega$		40	-
tPHL .					35	ns
tPLH .		C0 52	52			38
^t PHL	00	22			42	ns
tPLH	<u></u>	C2	C. = 15 = 5 . = 300 O	12	19	
tPHL .	0	02	$C_{L} = 15 \text{ pF}, R_{L} = 780 \Omega$	17	27	ns

100

$$\begin{split} & f_{tp_{LH}} \equiv & \text{propagation delay time, low-to-high-level output} \\ & t_{pHL} \equiv & \text{propagation delay time, high-to-low-level output} \\ & \text{NOTE 4: Load circuit and voltage waveforms are shown on page 3-10.} \end{split}$$

1. Construct a schematic diagram which implements the least significant bit of the rotate and hold portions of the design.

Assume the strobe inputs (G) on the 74157's are tied to ground, meaning the MUX's are always enabled. Also assume that the preset and clear inputs to the 7474 D flip flops are tied high, meaning they are always disabled. You needn't worry about initializing the register.

Based on the above, you only need to include the signals that are used in the design (you don't need to account for every pin on the schematic). Clearly indicate which devices are being used where.

2. What is the critical path (worst case combinational logic delay) in your design? You should assume that the 2-bit control input (S1S0) becomes valid at the same time that the Q outputs of the 7474 D flip flops become valid (synchronous system).

ZECAUSE DATA AND DELECT BECAME VALID AT THE GAME TIME A THROUGH FIRST MUX = 27ms (tern Saect -> OUTPUT) BECAUSE SI MUD SO ARE APPLIED CONCURCENTLY TO FIRST AND SECOND LEVEL MUX A THROUGH SECOND MUX = 14n5 (trut = tom DATA -> OUTPUT CRITICAL PATH / MAX PROPAGATION DELAY = 27nS + 14nS = 41nS

3. What is the minimum clock period (1/maximum frequency) of your design?

MIN PERIOD = CLK-> Q + AROUNE + tsy = 40ns + 4/ns + 20ns = 10/15

4. Add the circuitry necessary to add the increment function. Construct a schematic diagram of the increment circuitry for the two, least significant bits. You don't need to include the rotate/hold circuitry again, but do indicate where it would be added to the design in part 1 above and how it will be cascaded in part 5 below.

5. For the full, 4-bit register (cascaded copies of the design from part 4 above), what is the critical path in your design with the increment function added? Assume that the propagation delay of the adder is the same from any of Ai, Bi or C0 to C2 (carry out), tPLH = 19ns and tPHL = 27ns.

· PROPAGATION DERAY THROUGH LSB ADDER TO GENERATE CZ= ZINS tour · PROPAGATION DELAY THROUGH MISIS ADDOR TO GENERATE CO-> ZZ = 42 nS tanc · CRITICAL PATH THEOUSH HODGE 27 nS + 42nS = 69nS · ABOVE 1 TOU VERIES WITH MUXES 69nS+ 41nS = 110nS 2 CAULXES CASCADED ADDER

6. What is the new minimum clock period of your design (with the increment function)?

CLK->Q + & ABOVE + ESY = 40ns + 110ns + 20ns = 170 15